NELES

Industry standards

Fred Porth North American Business Manager

If you can't hear the audio, comment in the Chat box for help

2

In session features

Practicalities

Industry standards Table of Contents

- Design Standards
- NACE
- Seat Leakage
- Emissions
- Fire Safe

	1	Tag Numbe	Ξ.				371EV 104					
	2	Service					HC OVRHEAD VAPOR TO COKER FRACTNTR					
	3	Location					FIELD					
	4	Equipment	System	n			NA			0		
OFNERN	5	Line No.		1	P&ID		371-PB-010-2	24"-	EK34FC-HC-50	G41-RK371	-063	
GENERAL	6	Area Classi	fication	n	P Rating		Zone1,Gr.IIC,	Т3		IP65		
	7	Ambient Temperature:		Min.	Max.	7.5°C			43°C			
	8	Equipment	numbe	er.								
	9	9 Enclosure Type					ATEX EExd,I	IC,T	6/CCOE Certified	with the		
	10	10 NACE Requirement			BR Certificatio	on	NA	0.00		NA		
PIPE	34	Line Size_S	Scherlu	ile I	lp3at	Outlet	24 in	23 1	40	A45 20	M	
	28	Body Type	Mater	rial	Ball / Rotary	A217-C5		50	Motor Starter		Required	
	29	Body Size	Ratin	a	24 in	300#	1	51	KW Rating		STA	
	30	Body Form		Flanged type		ACTUATOR	52	Full Load Current	Rating	STA		
	31	Trim Material		13% Chr+Ha	rd faced seat	CONTINUED		Schematic Detail		Required		
	32	Packing Material		Note 10			54	Handwheel		Yes		
	33	Inlet Conne	ction	Rating	RTJ	ANSI 300#	1	55	Inching		STA	
RODY	34	Outlet Conn	ection	Rating	RTJ	ANSI 300#	-	56	Local/Off/Remote	Selector	Required	
0001	35	Flange Finis	sh	100	ANSI B16.5		1	57	Open/Close/Stop Pushbuttons		Required	
	36	Lubrication	& Isok	ation	Manufacturer Std.		1	58	Limit Switch Close	Limit Switch Closed		
	37	Bolting Le	eakage	Class	AN	SEVE(TSO)	ACCESSORIES	59	Limit Switch Open		Required	
	38	Bypass Tap	ps: Loc	/Size	STA		0.0000000000000000000000000000000000000	60	Status Lights	Status Lights		
	39	Port Size			Full Port]	61	Open&Close Torq	Open&Close Torque Switches		
	40) Plug/ Ball/ Disk Material			Solid CA6NM	I/H Chr/stellite6	15	62	Limit Switch Tag	Limit Switch Tag		
	41	Seat Materi	al		stellite6		FLECTORAL	63	Power Cable		1" NPT(F)	
	42	Shaft Mater	rial		CA6NM		CONNECTION	64	Control Cable		1/2" NPT(F)	
	43	Туре	S	ize	ELECTRIC	STA	CONNECTION		Data Cable		1" NPT(F)	
	44	Speed (RPI	M)		STA			66 Test Catego			API 598	

NELES

1. Presence of coke fines

2. 4 way switch ball valve full bore ASME class 900 metal seated

3. Steam purges required: Yes, MP Steam (operating = 16.2barg/250°C, design = 19barg/400°C)

NOTES

4. Connections: Flanged 10" ASME B16.5 900# RF 3.2-6.3Ra

5. Body material: Cast A217.C12, pipe spec 9Cr 1Mo

6. Trim material: *

7. Seat material: Stellite 6 welded on 9Cr 1Mo ring *

8. Packing: Graphite *

9. Operator: Motor - see technical description 190687-00-IC-SP-00007

10. Fireproofing: Yes, see technical description 190687-00-IC-SP-00007

11. Limit switches: Yes, five(5), see technical description 190687-00-IC-SP-00007

12. Local Panel: Yes, see technical description 190687-00-IC-SP-00007

13. NACE Compliance: MR0103

Design standards ASME(American Society of Mechanical Engineers)

- <u>ASME B16.34</u>: Standard for valve design for flanged, threaded and welded end valves. Pressure-temperature rating, dimensions, tolerances, materials, etc.
- ASME B16.10: Standard for face to face and end to end dimensions of valves.
- ASME B16.5: Standard for flange ends

ASME B16.34-2004

Face-to-Face and End-to-End Dimensions of Valves (Revision of ASME B16.5-1996)

ASME B16.5-2003

Pipe Flanges and Flanged Fittings

NPS 1/2 Through NPS 24 Metric/Inch Standard

ASME/ANSI - 1986

Design standards ASME B16.10

+-

NELES

Class 250 Cast Iron

Class 300 Steel

			and	d Class 300 51	eel		-			
		Gate,		Plug		Globe,			Ball	
Nor Va Si	ninal Ive ize	Solid Wedge and Double Disc,	Short Pattern,	Regular Pattern,	Venturi Pattern,	Lift Check, and Swing Check,	Angle and Lift Check,	Long Pattern,	Short Pattern,	Long Pattern,
NPS	DN	A	A	A	A	A	D	A	A and B	В
2	50	8.50	7.25	8.50		10.50	5.25	8.50	8.50	8.50
2 ¹ /2	65	9.50	8.00	9.50		11.50	5.75	9.50	9.50	9.50
3	80	11.12	9.25	11.12		12.50	6.25	11.12	11.12	11.12
4	100	12.00	10.50	12.00		14.00	7.00	12.00	12.00	12.00
5	125	15.00		15.25	•••	15.75	7.88			
6	150	15.88	14.88	16.75	15.88	17.50	8.75	15.88	15.88	18.00
8	200	16.50		19.75	16.50	21.00	10.50	19.75	16.50	20.50
10	250	18.00	22.38	23.50	18.00	24.50	12.25	22.38	18.00	22.00

Valve design standard ASME B16.34

 The body, bonnet or cover, body joint bolting, and body-bonnet or cover bolting, shall be constructed of materials as listed in the respective ASTM specifications referred to in Table 1.

Material		Fo	Forgings		astings	Plates		Bars		Tubular	
Group No.	Nominal Designation	Spec. No.	Grade	Spec. No.	Grade	Spec. No.	Grade	Spec. No.	Grade	Spec. No.	Grade
1.1	C-Si C-Mn-Si	A 105 A 350	LF2	A 216	WCB	A 515 A 516 A 537	70 70 Cl. 1	A 105 A 350 A 696	LF2 C	A 672	C 70 B 70
	3 ¹ / ₂ Ni C-Mn-Si-V	A 350 A 350	LF3 LF6 Cl. 1								
1.2	C-Si 2 ¹ / ₂ Ni 3 ¹ / ₂ Ni C-Mn-Si			A 352 A 352 A 216 A 352	LC2 LC3 WCC LCC	A 203 A 203	B E			A 106	С

Table 1 Material Specification List: Applicable ASTM Specification

GROUP 1 MATERIALS

Valve design standard NELES ASME B16.34 - Rating designations are tabulated for Class in Table 2

			•	•								
A 105 (1)(2)		A 515 Gr. 70) (1)	A 696 Gr.	C	A 6	72 Gr. B70 (1)					
A 216 Gr. WCB (1)		A 516 Gr. 70) (1)(3)	A 350 Gr.	LF6 Cl.1 (4)	A 6	72 Gr. C70 (1)					
A 350 Gr. LF2 (1)		A 537 Cl. 1	(5)	A 350 Gr.	LF3 (6)							
Temperature.	Working Pressures by Class, psig											
°F	150	300	600	900	1500	2500	4500					
-20 to 100	285	740	1,480	2,220	3,705	6,170	11,110					
200	260	680	1,360	2,035	3,395	5,655	10,185					
300	230	655	1,310	1,965	3,270	5,450	9,815					
400	200	635	1,265	1,900	3,170	5,280	9,505					
500	170	605	1,205	1,810	3,015	5,025	9,040					
600	140	570	1,135	1,705	2,840	4,730	8,515					
650	125	550	1,100	1,650	2,745	4,575	8,240					
700	110	530	1,060	1,590	2,665	4,425	7,960					
750	95	505	1,015	1,520	2,535	4,230	7,610					
800	80	410	825	1,235	2,055	3,430	6,170					

Table VII-2-1.1 Ratings For Group 1.1 Materials

Valve design standard ASME B16.34

• Material groups may have different temperature limits

Valve design standard NELES ASME B16.34 - Rating designations are tabulated for Class in Table 2

	Table VII-2-1.1 Ratings	s For Group 1.1 Materials	
A 105 (1)(2)	A 515 Gr. 70 (1)	A 696 Gr. C	A 672 Gr. B70 (1)
A 216 Gr. WCB (1)	A 516 Gr. 70 (1)(3)	A 350 Gr. LF6 Cl.1 (4)	A 672 Gr. C70 (1)
A 350 Gr. LF2 (1)	A 537 Cl. 1 (5)	A 350 Gr. LF3 (6)	

km

NOTES:

- Upon prolonged exposure to temperatures above 800°F, the carbide phase of steel may be converted to graphite. Permissible, but not recommended for prolonged use above 800°F.
- (2) Only killed steel shall be used above 850°F.
- (3) Not to be used over 850°F.
- (4) Not to be used over 500°F.
- (5) Not to be used over 700°F.
- (6) Not to be used over 650°F.

ASTM - American Society for Testing and Materials Dictates material physical and chemical properties

21) 	304L	304	316L	316		
Element, % (max, ex- cept where range is given)	CF3, CF3A J92700	CF8, CF8A J92600	CF3M, CF3MA J92800	CF8M J92900	CF3MN J92804	CF8C J92710
Carbon	0.03	0.08	0.03	0.08	0.03	0.08
Manganese	1.50	<mark>1.</mark> 50	1.5 <mark>0</mark>	1.50	<mark>1.5</mark> 0	1.50
Silicon	2.00	2.00	1.50	1.50	1.50	2.00
Sulfur	0.040	0.040	0.040	0.040	0.040	0.040
Phosphorus	0.040	0.040	0.040	0.0 <mark>4</mark> 0	0.040	0.040
Chromium	17.0- 21.0	18.0- 21.0	17.0- 21.0	18.0-	17.0- 21.0	18.0- 21.0
Nickel	8.0-	8.0-	9.0-	9.0-	9.0-	9.0-
Molybde-	0.50	0.50	2.0-	2.0-	2.0-	0.50

🖗 A351/A351M – 10

ASTM - American Society for Testing and Materials Dictates material physical and chemical properties

NELES

TABLE 3 Tensile Requirements

	CF3 J92700	CF3A J92700	CF8 J92600	CF8A J92600	CF3M J92800	CF- 3MA J92800	CF8M J92900	CF- 3MN J92804	CF8C J92710	CF10 J92950
Tensile strength, nin, ksi [MPa] /ield strength, ^A nin, ksi [MPa] Elongation in 2 in. or 50 mm, ^B min, %	70 [485] 30 [205] 35.0	77 [530] 35 [240] 35.0	70 [485] 30 [205] 35.0	77 [530] 35 [240] 35.0	70 [485] 30 [205] 30.0	80 [550] 37 [255] 30.0	70 [485] 30 [205] 30.0	75 [515] 37 [255] 35.0	70 [485] 30 [205] 30.0	70 [485] 30 [205] 35.0

Design standards CWP/WOG – Not ASME rated

CWP / WOG (Cold Working Pressure / Water Oil Gas)

- The maximum pressure the valves are rated for (-20°- 100°F)
- Standard for Jamesbury[™] "Value-Line Products"

Design standards API-608

- API-608 is a ball valve design standard that require specific options:
 - Anti-Static Devices (i.e Static Grounding or Top Grounding)
 - Anti-Blow Out Stem
 - MAST must be larger than 2x max torque
- Certain material restrictions on stem material.
 - Due to MAST constraints 316SS might need to be upgraded to 17-4PH.
- API-608 can be called out by construction of the valve or word modifier.
 - WM NL = API-608

API 6D valves

Typical features and traits:

- Multi-piece bodies with multiple external leak paths
- Spring loaded metal seal with small polymer insert. Upstream seat sealing
- Emergency sealant injection ports for seats and stem seal
- Typically trunnion and higher pressure class
- Primarily on/off, low cycle life (a few thousand cycles)
- Many o-ring seals

API 608 valves

NELES

Typical features and traits:

- Uni-body and split body. Minimum external leak paths.
- Solid, single piece polymer or metal seat.
- Adjustable gland packing
- Mostly floating ball, some trunnion. Mostly downstream seat sealing
- Primarily on/off, higher cycle life (ten to hundreds of thousands)
- No o-rings

Design standards API-609

- API-609 is a butterfly valve design standard that require specific options:
 - Disc Clearance (standard)
 - Specific Testing (API-598)
 - Anti-Blow Out Stem (standard)
 - Face to Face Limitations (standard)
- API-609 can be called out by WM NN.

Questions?

NACE – Nat'l Association of Corrosion Engineers Materials Selection for Sour Service

- Hydrocarbon streams are termed sour when they contain hydrogen sulphide, H₂S
- Standards can help to prevent sulphide stress corrosion cracking (SSC) failures wherever H₂S is present
- Prevention of SSC is controlled by limiting max hardness of the alloy

NACE

- NACE MR0175 used to be the sole standard. This was discontinued and replaced with two specs in 2003.
- MR0175 is designed for materials to be used in oil & gas applications.
- MR0103 is for petroleum refining applications.
- Neles has internal procedures to handle NACE applications (both specifications)
- Many customers are not aware of the change and continue to reference MR0175. (Pre-2003)

NACE MR0175 / ISO 15156, Oil & Gas Service

- Many major changes from previous version of MR0175 (pre-2003)
- Chloride stress corrosion (CSC) is added in the scope
- We need more information about the process in order to select a valve
 - Maximum Chloride Content (mg/l)
 - H₂S Content (Mol% or ppm)
 - Maximum Pressure and Temperature of the Application
 - Presence of Free Sulphur
- NACE MR0175 / ISO 15156 valves can not be pre-engineered without making assumptions

NACE MR0103, refining applications

NELES

- In many ways easier to handle than MR0175 / ISO 15156
 - Material selection does not depend on process
 parameters
 - Unique NACE MR0103 valves can be preengineered
 - Standard carbon steel and stainless steel NACE valves can be delivered from most Neles[®] and JB valve series.

An American National Standard Approved November 23, 2015

Neles summary NACE compliance

- Nace MR0103
 - Downstream focused
 - Most standard Neles[™] and Jamesbury[™] valves meet this with standard model coding

- Nace MR0175
 - Upstream focused
 - Need to certify with the following information:
 - Sulfur content
 - H₂S partial pressure
 - pH of media
 - Chloride content (ppm)

Neles summary NACE compliance

Seat leakage Background

- Acceptable seat leakage is defined by test standards.
- Leakage testing procedure is defined by agreed upon test standard.

NELES

• All Neles valves are seat leak tested following assembly.

Most common standards:

- ANSI / FCI 70-2-2006
- ISO 5208 3rd Edition
- API 598 8th Edition

Control valve seat leakage ANSI / FCI 70-2-2006

Fluid Controls Institute, Inc. Technical Resources for Instrumentation and Fluid Control

- Leakage rates are defined by Classes I \rightarrow VI and different test procedures.
- Class IV generally associated single-seat control valves
 - Standard for Neles[™] Control Valves (R-Series, FINETROL, Rotary Globe).
 - Acceptable Leakage: 0.01% of rated valve capacity.
- Class V generally associated with metal seat, single-seat control valves required to close
 - Standard for Neles[®] Metal Seated Ball & Butterfly Valves.
 - Acceptable Leakage for Water: 0.0005 ml/min per inch of seat per max. body rating pressure.
 - Acceptable Leakage for Air: 4.7 standard ml/min per inch of seat at 50 psig.
- Class VI generally associated with resilient seating control valves
 - Optional for select Neles® metal seated products.
 - Acceptable Leakage for Air: Refer to Table in Seat Leakage Guide.

Seat leakage ANSI / FCI 70-2-2006

Class VI Acceptable Leakage

Seat Diameter (inches)	Leakage (ml/min)	Leakage (bubbles/min)*
≤1	0.15	1
1.5	0.30	2
2	0.45	3
2.5	0.60	4
3	0.90	6
4	1.70	11
6	4.00	27
8	6.75	45
10	11.1	
12	16.0	
14	21.6	
16	28.4	

* 1 bubble is equivalent to 0.15 ml

Seat leakage **ISO 5208**

- Leakage rates are defined by rates for Gas or Liquid Tests.
- Low Pressure Gas Test
 - Pressure: 87 psig +/- 14.5 psig
- High Pressure Liquid Test
 - Pressure: 1.1 x CWP or dP of valve.
- Acceptable Leakage

Rate D Test Media Rate A Rate B Rate C 0.03 Liquid 0 0.01 0.1 Gas 0 0.3 3.0 30.0

Maximum Acceptable Leakage Rates

(mm3/second x DN number)*

* 1000 mm3 = 1 ml

Seat leakage API 598

- Leakage rates are defined by Gas or Liquid Tests.
- Low Pressure Gas Test
 - Pressure: 60 psig to 100 psig
- High Pressure Liquid Test
 - Pressure: 1.1 x max. rated pressure or dP.
- Acceptable Leakage

Note: All resilient seated valves require zero leakage

Valve Size	Liquid Test (drops/min)*	Gas Test (bubbles/min)**		
≤ 2"	0	0		
2.5" to 6"	12	24		
8" to 12"	20	40		
≥ 14"	2 drops/min per inch of valve size	4 bubbles/min per inch of valve size		

* 1 milliliter is considered equivalent to 16 drops

** 1 bubble is considered equivalent to 0.15 ml

Maximum Acceptable Leakage Rates

Neles seat leakage guide

- Guide to ANSI/FCI 70-2-2006
- Guide to ISO 5208 3rd Edition
- Guide to API 598 8th Edition
- Comparison of Leakage Rates
- Examples & Contexts
- Standard Neles Offerings

Seat leakage Leakage rates comparison charts

Comparison of Leakage Rates Using Air / Nitrogen

		Maximum		Drops / Min				
	ANSI / FCI	70-2 2013		ISO	5208		API-598	
Test Pressure (psig) ->	50)		73 t	o 102	60 to 100		
Valve Size (in)*	Class V	Class VI	Rate A	Rate B	Rate C	Rate D	Low Pressure Test	E
1	4.7	0.15	0	0.45	4.5	45	0	
1.5	7.05	0.30	0	0.72	7.2	72	0	
2	9.4	0.45	0	0.9	9	90	0	
2.5	11.75	0.60	0	1.17	11.7	117	10	
3	14.1	0.90	0	1.44	14.4	144	12	
4	18.8	1.70	0	1.8	18	180	16	
6	28.2	4.00	0	2.7	27	270	24	
8	37.6	6.75	0	3.6	36	360	32	
10	47	11.1	0	4.5	45	450	40	
12	56.4	16.0	0	5.4	54	540	48	
14	65.8	21.6	0	6.3	63	630	56	
16	75.2	28.4	0	7.2	72	720	64	

* Assumed full size seat diameter for ANSI / FCI 70-2-2013

Bubbles/min

Seat leakage Leakage rates comparison charts

Comparison of Leakage Rates Using Water

Pressures based on ASME class 300 carbon steel body rating 740psig per ASME B16.34

		Maximum Acceptable Leakage (ml/min)										
	ANSI / FCI 70-2 2013		ISO	5208		API-598						
Test Pressure (psig) ->	740		83	814								
Valve Size (in)*	Class V	Rate A	Rate B	Rate C	Rate D	High Pressure Test						
1	0.37	0	0.015	0.045	0.15	0						
1.5	0.56	0	0.024	0.072	0.24	0						
2	0.74	0	0.03	0.09	0.3	0						
2.5	0.93	0	0.039	0.117	0.39	5						
3	1.11	0	0.048	0.144	0.48	6						
4	1.48	0	0.06	0.18	0.6	8						
6	2.22	0	0.09	0.27	0.9	12						
8	2.96	0	0.12	0.36	1.2	16						
10	3.70	0	0.15	0.45	1.5	20						
12	4.44	0	0.18	0.54	1.8	24						
14	5.18	0	0.21	0.63	2.1	28						
16	5.92	0	0.24	0.72	2.4	32						

* Assumed full size seat diameter for ANSI / FCI 70-2-2013

Drops/min

Comparison of leakage rates Example: XT04CWTAS6SJHADD

Gas Test	Leakage Rate (ml/min)	Time to fill the volume of a basketball
ISO 5208 Third edition Rate A	0	
ANSI/FCI 70-2-2006 class VI	1.7	about 3 days
ISO 5208 Third edition Rate B	1.8	a little less than 3 days
API 598 Eighth edition	3.6	about a day and a half
ISO 5208 Third edition Rate C	18.0	6.6 hours
ANSI/FCI 70-2-2006 class V	18.8	6.3 hours
ISO 5208 Third edition Rate D	180	40 minutes

1	
Y	
4	

Liquid Test	Leakage Rate (ml/min)	Time to fill a medium cup of coffee (14oz)
ISO 5208 Third edition Rate A	0	
ISO 5208 Third edition Rate B	0.06	a little less than 5 days
ISO 5208 Third edition Rate C	0.18	about a day and a half
ANSI/FCI 70-2-2006 class V	0.55	12.5 hours
ISO 5208 Third edition Rate D	0.60	11.5 hours
API 598 Eighth edition	0.75	9 hours

Emissions Background

- Unnecessary loss of end product.
- Frequent maintenance.
- Higher risk of fire and explosions.
- Higher risk of toxic atmosphere and injuries.
- Regulatory Requirements

Fugitive emission requirements EPA - Environmental Protection Agency

- Part of environmental legislation in the United States.
- Requirements set forth based on the Clean Air Act of 1990.
- Plants handling toxic or hazardous chemicals must comply with EPA fugitive emissions requirements.
- The current EPA criteria for VOC emissions level is 500 ppm.
 - Neles often fulfills 100 ppm.

Emissions standards TA-Luft regulation / VDI 2440

- Effective in Germany since Oct. 2002.
 - Leakage = 1E-4 or 1E-2 (mbar x liter) / (sec x m)
 - 60,000 cycles
 - Graphite or Teflon
- Standard requirement for valves delivered into most European industries.

Counter Dermanation 11 counter (countery pricesy: bealthcorver, 2014 free: Centrement, 2014		
	Certificate	
	of typetest	
	in ace, to TA Luft	
Name and address		
of Manufacturer:	Metso Automation Oy Field Systems	
	B(Chaine 31D)	
	Finland	
die bi		
Regulation	TA-Luft; VDI 2440; temperature range: - 29°C bis +40°C; vension: or 2002	
Type classification:	Armatures of sonies Neles RE Begment valves pominal diametre: DN 25 to DN 400:	
	 Armstures of series levels LWLG Butterfly valves nominal diametro: DN 80 bis ON 499; 	
	 Armstures of series Neles L5 Dutterfly valves nominal diametrs. DN 100 bis DN 600; 	
C Cranenta	pressure range: Class 160 300 / 011 10, 10, 35, 40 and 60	
Scope of application:	Control and close off for poisonous or combustible liquids and gases.	
material of stem pecking:	Virgin - PTFE (V - rings)	
it is percey compacing that the performance as stipulated in	 acove classified types of annaluses satisfy the emission control the TA-LuPL section 5.2.6.4. 	
Hamburg, May. 25* 2005		
Competence center	STATISTICS STATISTICS	
pressure equipment and systemetics	en technology	
	000 CM	
2 11 1	(A and be the	

Emissions standards EN-ISO 15848-1

- ISO 15848-1 refers to a standard for fugitive type emissions approvals.
 - Tightness Class (A,B,C)
 - A being the tightest and only possible with a bellow seal.
 - Endurance Class (CO-1 to CC-3)
 - CO = On/Off and a few hundred cycles.
 - CC = Control and a few thousand to hundred thousand cycles.
 - Temperature Class (-196°C to 400°C)

Fugitive emission requirements API

- API 622 Type Testing of Process Valve Packing for Fugitive Emissions
- API 624 Type Testing of Rising Stem Valves Equipped with Graphite Packing for Fugitive Emissions
- API 641 Type Testing of Quarter-turn Valve for Fugitive Emissions

Neles solutions

- Emissions Offerings
 - Live-Loaded Stem Packing
 - PTFE V-Rings for moderate temperatures.
 - Graphite as standard for fire-safe requirements or elevated temperatures.
 - Die Molded, Fugitive emissions grade

Fire-safe Valve definitions

- "Fire-Safe Certified"
 - Valves are tested, qualified and certified to meet industry standard.
 - Valves require fire-safe compatible seals, packing and construction.
- Inherently "Fire-Safe"
 - Valves are fire-safe by design but have not been tested or certified.
 - Valves require fire-safe compatible seals, packing and construction.
 - Neles Factory should be consulted for comprehensive offerings.
- None "Fire-Safe"
 - Valves can not be designated as fire-safe are not suitable for such applications.
 - Non-fire-safe seals, packing and construction are used.

	\sim	
1		_

NELES

Fire-safe Background

- Common Neles Valve Standards
 - API 607 7th Edition
 - API 607 4th Edition, May 1993, 5th Edition, Sept. 2005, 6th Edition / ISO 10497, 2010
 - BS 6755: Part 2, 1987
 - API 6FA for Pipeline Valves
- Coverage and Comparability
 - API 607 is the most stringent test.
 - Testing Coverage in Valve Sizes:
 - Testing in API or BS qualifies to 2x valve sizes (i.e. 3" qualifies 4", 6").
 - Testing to 8" in API qualifies all larger sizes.
 - Testing to 16" in BS qualifies all larger sizes.
 - Testing Coverage in Valve Pressure Classes:
 - Testing in API or BS qualifies higher pressure classes (i.e. 300# qualifies 600#).

Fire-safe General testing

- Expose valve to 1400°F 1800°F fire for 30 minutes.
- Cool down valve by spraying water.
- API 607 4th edition, May 1993
 - Test external and internal leakage with low pressure (30 psig) after full open/close cycle.
- API 607 5th edition, Sept 2005
 - Test external and internal leakage with high pressure (75% of rated pressure, metal seated) and low pressure (30 psig, soft seated) after full open/close cycle.
- BS 6755
 - Test external and internal leakage with high pressure (75% of rated pressure) and low pressure (30 psig) after full open/close cycle.

Fire-safe General testing

Fire-safe General testing

Questions?

Reinventing reliability

neles.com

@nelesflow

